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ABSTRACT

Generation of a magnetic field-aligned current in the auroral zone
connecting the magnetospheric and ionospheric plasmas has been studied
by means of a three dimensional particle simulation model. The model is
of a magnetostatic variety appropriate for a low beta plasma in which the
high frequency transverse displacement current has been eliminated. The
simulation model is highly elongated along the magnetic field lines in

order to model a highly elongated flux tube in the auroral zone. An
enhanced field-aligned current was generated by injection of a
magnetospheric plasma across the auroral zone magnetic field at the
center of the model. Such a plasma injection may correspond to a plasmoid
injection at the geomagnetic tail associated with magnetic reconnection
during a substorm or a transverse plasma flow along the low latitude
magnetopause boundary layer. The results of the simulations show that
the field-aligned current can be enhanced over the thermal current by a
factor of 5 - 10 via such injection. Associated with the enhanced current
are the electrostatic ion cyclotron waves and shear Alfven waves excited

in the auroral zone.
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1. Introduction

Physics of a plasma in the auroral zone is one of the most interesting and
challenging branches of space plasma physics. To note but a few, they
include large amplitude electrostatic ion cyclotron waves associated with
upward flowing ion beam above 6000 km (Kintner et at., 1979), strong
field-aligned currents of 1 - 5 pA/m (Potemra, 1983), generation of
accelerated auroral electrons at low altitude (Arnoldy, 1981),

acceleration of upward flowing ions perpendicular to the magnetic field
leading to formation of ion conics (Gorney et al., 1981) and gereration of
field-aligned electric field (Mozer, 1981).

A great deal of observational, theoretical and numerical work has been
performed on each of these subjects and these subjects are indeed well
understood. There are some attempts to study the interactions and
relationships amongst these different physical processes in the auroral
zone in order to develop a global macroscopic model taking the
microscopic plasma processes into account. Quantitative understanding of
cause and effect relationship between the field-aligned current and double
layer, for example, is one of such subjects which remains to be resolved
from the microscopic point of view. Once these relationships or
causalities among various parts of the auroral processes are understood,
one can begin to develop a quantitative unified view of auroral plasma
physics from the microscopic point of view (Akasofu, 1981). Toward this
goal, we developed a three dimensional particle simulation model in which
generation of a field-aligned current in the auroral zone and its effect on
the various microscopic processes can be studied in a self-consistent
manner. The model is described in Section 2 in which a three dimensional
elongated grid was used in order to model a highly elongated flux tube in
the auroral zone. In Sec. 3, results of the simulations are presented for
the cases with and without a plasma injection demonstrating that a
field-aligned current can be enhanced over the thermal level when a
plasma is injected into the auroral zone. Concluding remarks are given in
Sec. 4.

2. Simulation Model
Here we briefly describe the simulation model developed for the present

study. In order to study generation of field-aligned currents and
microscopic plasma processes associated with the current, we assume in
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our model that the driving mechanism for the current is the perpendicular
injection of a magnetospheric plasma into the auroral zone ionosphere.
Such an injection may take place during a substorm at the geomagnetic

tail region or at the low latitude boundary layer at the flanks of the
magnetopause. The model is sketched in Fig.1 where the three dimensional
cylinder elongated along the magnetic field corresponds to the auroral
zone. The model can be considered part of the flux tube in the auroral zone
connecting the magnetosphere and the ionosphere. In that case one may use
a periodic boundary condition in three directions. On the other hand, the
model can be considered to represent an entire flux tube between the two
polar regions of the ionosphere located at the both ends of the model

while the magnetospheric plasma is located at the middle of the model. In
that case proper boundary condition for the potential @ is
2(z=0)=0(z=L2)=0.

In order to model a highly elongated flux tube of a plasma, the spatial grid
used in the simulations is highly elongated using cubic splines which is
known to suppress numerical instabilities (Okuda et el., 1979). In this
model the grid size in the z-direction along the magnetic field can be 10 -
100 times that of the grid size in the perpendicular x-y plane. This is very
important in modeling the auroral zone since the flux tube in this region
can be a few thousand km long while its transverse dimension is a few
tens or hundred km wide.

In order to test the validity of the model developed, test runs were made.
Figures 2 and 3 show results of such simulation for a plasma near thermal
equilibrium in which the plasma density is spatially uniform and the
velocity distribution is a Maxwellian. Such a run is important in order to
confirm the validity of the code by comparing the fluctuations from the
simulation with theoretical predictions available for a plasma in
thermodynamic equilibrium. Shown in Figs. 2 and 3 are the electrostatic
and magnetic fluctuations obtained from the simulation by time-averaging
the measured electric and magnetic fields. Both the electric and magnetic
field energies per Fourier mode (k-space) agree well with the theoretical
predictions given by
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is the effective shape factor used in the simulations. Linear interpolation
was used in the transverse x-y plane while cubic interpolation was

carried out in the z-direction where the grid is highly elongated. Such high
order interpolation was required for the numerical stability in that

directio (Okuda et al.,1979). Note that we used gaussian shaped finite-size
particles with its width "a".

In order to model generation of field-aligned current in the auroral zone, a
plasma is injected perpendicular to the magnetic field. Such an injection
can be considered a plasmoid injection at the geomagnetic tail via
magnetic reconnection or a plasma penetration across the magnetopause
flank at the low latitude boundary layer. Owing to the difference between
the perpendicular motions of the ions and the electrons, a charge
separation will be set up across magnetic field generating perpendicular
electric field. Such an electric field is then short-circuted by the
field-aligned current mostly carried by the ionospheric electrons in the

. auroral zone. When the transverse velocity caused by the perpendicular
electric field is large enough overcoming viscosity damping,
Kelvin-Helmholtz instability can develop generating large scale vortices
across magnetic field (Okuda and Hiroe, 1987).

Shown in Figs. 4 and 5 are results from such simulations carried outin a
2-1/2 dimensional electrostatic code in an external magnetic field given
by B = (Bx,0,Bz) with Bz >> Bx. A plasmoid is injected at the middle of the
y coordinate in the x direction across magnetic field. The scatter plots for
the ions shown in Fig.4 at four different time steps show that the ripples
at the plasma boundary develop into large scale vortices. The
corresponding electrostatic potential contours shown in Fig. 5 indicate

the generation of large scale structures from smaller contours.

According to the theory of Hasegawa and Sato (1979), vortex motion of a
plasma generates a field-aligned current given by

2 1
3 =B85 B+ 32 J°9B - o5, -Telde (4)

whete Q is the vorticity, J_ is the plasma current across magnetic field
and Jin = -(c /B )(dv/dt)xB. Physically speaking, the motion of the ions
and electrons across magnetic field generates charge separation because



of the presence of the ion finite-gyroradius and inertia, magnetic field
curvature and gradients. Once generated, such charge separation can be
neutralized by the motion of the electrons along field lines thereby
generating a field-aligned current. Because of the presence of the
ionosphere, each field line is not independent so that a macroscopic
current and hence potential structures can develop along and across field
lines. Depending on the strength of the field-aligned current, various
microinstabilities may be excited in the auroral zone as we shall see in
the next Section.

3. Results of the Simulations

Using the simulation model described, several runs were made in order to
study field-aligned current generation by injection of a plasma across
magnetic field. First, results of the simulation without plasma injection

are shown which are then compared with those with injection. Typical
simulation parameters are: system size Lx.Ly.Lz = 128.128.1280 Debye
cube (64.64.64 grid points),ion to electron mass ratio = 100,
magnetospheric to ionospheric plasma temperature = 9, time step of
integration = 5 in the unit of the electron plasma frequency.

Shown in Fig. 6 and 7 are the results of the simulation at t =400 without
plasma injection in which the ionospheric plasma was initially

distributed uniformly in the three dimensional space. Note the system is
highly elongated along the magnetic field, however, it is still only about
1000 Debye length long corresponding to only a few hundred meters or so.
We therefore assume that the simulated plasma is only part of much
larger plasma in an auroral zone flux tube extending a few thousand km so
that a periodic boundary condition was used in three directions. The four
frames in Figs. 6 and 7 correspond to four locations along the z direction
located at (a) z= Lz/4, (b) z=Lz/2, (c) z=3Lz/4, and (d) z=Lz. Each arrow in
Fig. 6 represents a field-aligned current Jz at the location in the
two-dimensional x-y plane. Arrows may be pointing upward corresponding
to the upward flowing current or downward corresponding to the
downward flowing field-aligned current. It is clear that the currents are
more or less uniformly distributed in the x-y plane as well as along the
magnetic field. The strength of the current will be amplifield as we shall
see next when a plasma is injected into the auroral zone. The potential

" contours shown in Fig. 7 indicate thermal fluctuations of the system

whose spatial size and the amplitude become larger with the injection.
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We shall now study the effect of a plasma injection into the ionospheric
plasma in the auroral zone. A magnetospheric plasma with the density
equal to that of the ionosphere but with its temperature 9 time the
ionospheric temperature was injected across magnetic field at the center
of the system. The density of the injected plasma is localized at the
center and is gaussian shaped in three directions with the half-width a
quarter of the system size in three directions. The initial injection speed
was subsonic and it is one-half of the magnetospheric ion thermal speed
pointing to the x-direction. Once the magnetospheric plasma is injected,
both the ions and electrons move across and along magnetic field. The
motion in the perpendicular x-y plane tends to generate a charge
separation since the ions move across magnetic field while the electrons
are trapped by the magnetic field. The charge separation thus generated
can be neutralized by the ionospheric electrons flowing along the
magnetic field thereby generating a field-aligned current.

Shown in Fig. 8 are the scatter plots of the electrons (top) and ions
(bottom) injected into the magnetic field at t=200. The left column, (a)
and (d), are in the x-y plane, the middle, (b) and (e), in the x-z plane , and
the right, (c) and (f) are in the y-z plane respectively. One can observe
that in the x-y plane, electrons shown in (a) more or less remain at the
center of the system while the ions moved to the left and downward. The
ion motion is caused by the initial injection and subsequent gyration in
the magnetic field. In the x-z and y-z planes, electrons rapidly spread out
along the magnetic field while ions cannot follow the electrons as shown
in (b) and (e), and (c) and (f). It is clear from (e) and (f) that the ions
moved in the direction of the injection across magnetic field.

Shown in Fig. 9 are the corresponding potential contours in the x-y plane
at four different z locations as before at: (a) z=Lz/4, (b) z=1.2/2, (c) z=
3Lz/4, and (d) z=Lz at t=200. Comparing Fig. 9 with Fig.7 without
injection, one can find that the size of the contours are generally larger
and their amplitude is also larger by a factor 5 or so. While it is true that
the amplification was much larger in two dimensional simulations shown
in Figs. 4 and 5 where no charge neutralization took place by the
field-aligned current, an enhanced current can be generated in three
dimensions.

Similar coalescence of the potential contours can take place for the
magnetic field structure as shown in Fig. 10 where the z-component of the
vector potential Az is shown at four locations along z as before.
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At each location in z, the contour is dominated by a few large vortices
corresponding to the field-aligned current filament. Both positive and
negative contours exist which correspomd to the upward and downward
going currents. Coalescence of smaller magnetic islands into larger ones
are well-known in magnetohydrodynamics

Let us now look at the field-aligned current whether or not it was indeed
enhanced over the thermal current due to plasma injection. Shown in Fig.
11 is the field-aligned current carried by the ionospheric plasmas at the
four z locations as before at t=200. comparing these with the current in
Fig. 6 for the ionospheric plasma without injection, the magnitude is
enhanced typically by a factor 3 or so in the presence of injection.
Localized current filaments are found which may be moving upward or
downward along field fines depending on the pattern of plasma injection.

Shown in Fig. 12 are the similar field-aligned current carried by the
injected magnetospheric plasma. These currents are more or less
localized at a location where the plasma density is the maximum as seen
in Fig. 8. It is interesting to note that the direction of the current carried
by the magnetospheric plasma is pointing only one direction at each
two-dimensional x-y plane. In Fig.12 (a), for example, the current is
pointing upward everywhere while it is downward in Fig. 12 (c). These
field-aligned current must be closed by the perpendicular cross field
current in order for the plasma to maintain charge neutrality.

The total current which is the sum of the ionospheric and magnetospheric
currents are shown in Fig. 13 in the same format. Again the magnitude of
the total current is several times larger than the corresponding current in
a plasma without injection. One can observe a presence of localized
current filaments in the x-y plane. In Fig. 13 (c), for example, a downward
current filament can be seen at the outer edge of the system while in the
middle, an upward moving current filament can be seen. The magnitude of
the total current can exceed locally the ionospheric ion thermal speed and
therefore one may expect excitation of various plasma waves by the
field-aligned current. Local velocity distributions were measured for both
the ionospheric ions and electrons confirming that the field-aligned
current is primarily carried by the ionospheric electrons moving along
magnetic field whose local drift speed can exceed ion thermal speed.
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In order to detect the waves generated by the field-aligned current, power
spectrum was calculated for both the electrostatic and vector potentials
for several Fourier modes in the presence of plasma injection. Shown in
Fig. 14 are the measured power spectrum for the electrostatic potential
of the mode (3,6,0), (a), and for the vector potential of the mode (0,6,6),
(b). One can identify the frequency of the electrostatic potential is close
to the ion gyrofrequency, while the magnetic fluctuations correspond to
the shear Alfven waves. The amplitude of these waves are an order of
magnitude larger than the corresponding thermal plasma without
injection. It is clear that the excitation of these waves above the thermal
level must by caused by the field-aligned curret (Kindel and Kennel, 1971).

4. Concluding Remarks

We have developed a three dimensional magnetostatic particle simulation
model in a low beta plasma in order to study generation of field-aligned
current and the related phenomena in the auroral zone. The model is a low
beta magnetostatic code with the highly elongated spatial grid along the
magnetic field in order to study the auroral zone plasma in a highly
elongated flux tube. The validity of the code was demonstrated by
simulating a plasma near thermodynamic equilibrium. The results of the
simulations were in good agreement with plasma theory. The code was
then used to study an enhaced field-aligned current generated by injection
of a magnetospheric plasma across magnetic field. Such a plasma
injection may take place at the geomagnetic tail associated with

magnetic reconnection during substorm or plasma flow at the
magnetopause in the low latitude magnetopause boundary layer.

The results of the simulations with injection confirmed generation of
enhanced field-aligned current associated with injection over the
corresponding thermal plasma. The enhanced current is primarily carried
by the ionospheric electrons whose speed can exceed the ion thermal
speed. As a consequence, both the electrostatic ion cyclotron and shear
Alfven waves are generated in the auroral zone. During the course of this
work, a number of talks were gives to report the progress (Hwang and
Okuda. 1989; Okuda,1991) and a final full length article is being prepared
for submission to the Journal of Geophysical Research (Okuda, 1992).
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FIGURE CAPTIONS

Sketch of the three dimensional simulation model in the auroral
zone. A plasmoid can be injected at the middle of the system,
z=0.5Lz. Both periodic and ionospheric boundary conditions can be
imposed at z=0 and z=Lz.

Test of the three dimensional model for a plasma near thermal
equilibrium: Electrostatic fluctuation energy as a function of the
Fourier mode. The solid curve is the theoretical prediction.

Test of the three dimensional model for a plasma near thermal
equilibrium: Magnetic fluctuation energy as a function of the
Fourier mode. The solid curve is the theoretical prediction.

Results of a 2-1/2 dimensional electrostatic simulation in which a
plasma is injected across magnetic field. Scatter plots of the
injected ions at (a) t=100, (b) t=200, (c) t=300, (d) t=400 where
the time is in the unit of the electron plasma frequency.

Electrostatic potential contours corresponding to the flow pattern
in Fig. 4. Note the formation of large scale positive and negative
contours resulting from plasma injection.

Plots of the field-aligned current in the z-direction, Jz, in the x-y
plane at four different locations in the z-direction: (a) z=Lz/4, (b)
z=1z/2, (c) z=3Lz/4, and (d) z=Lz when there is no plasma injection.
The field-aligned currents are more or less randomly distributed.
The magnitude of the current is modest and its maximum is about a
quarter of the thermal current defined by env . The time step in
this plot is t=400.

Plots of the electrostatic potential contours in the x-y plane at
four different locations along the z-direction as in Fig. 6 at t=400.
Positive and negative potential peaks are randomly distrubuted in
all these plots and no coherent large structures are seen.

Scatter plots of the injected magnetospheric electrons (top) and
ions (bottom) in the x-y (a,d), x-z (b,e), and y-z (c.f) plane. Note in
the x-y plane, ions can spread out faster than the electrons while
in the x-z and y-z planes, electrons spread out rapidly along
magnetic field.
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Fig. 9 Plots of the two-dimensional electrostatic potential contours in
the x-y plane at four different z locations as in Fig. 7. Note the
magnitude of the contours are larger than the thermal level.

Fig.10 Plots of the two-dimensional vector potential Az contours in the
x-y plane at four different z locations as in Fig. 9.

Fig.11 Plots of the field-aligned current carried by the ionospheric
plasma in the presence of plasma injection in the x-y plane at
four different z locations as in Fig. 6. Note the magnitude of the
current intensity is enhaced over the thermal level.

Fig.12 Plots of the field-aligned current carried by the magnetospheric
plasma at four different z locations as in Fig. 11.

Fig. 13 Plots of the total field-aligned current in the x-y plane at four
different z locations as in Fig. 12. The amplitude of the total
current is several times over the thermal level.

Fig.14 Power spectrum for the (a) (3,6,0) mode for the electrostatic
fluctuations and for the (b) (0,6,6) mode for the magnetic
fluctuations. The peaks of the spectra correspond to the ion
cyclotron frequency and the shear Alfven frequency.
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